# Xen-ARM Update: status and latency analysis

Sang-bum Suh, Jae Min Ryu { sbuk.suh, jm77.ryu }@samsung.com Future IT Research Center SAIT, Samsung Electronics April 28~29, 2010

Xen Summit North America 2010



## Agenda

- Xen-ARM Support
- New Features
- Latency Analysis of Xen-ARM
  - Instrumentation for Profiling
  - Interrupt Latency Analysis
  - System Call Latency and Hypercall Overhead Analysis
  - Context Switching Latency Analysis
- Discussions



# **Xen-ARM Support**

#### H/W Platform

#### H/W Platform

- ARM926EJ-S (i.MX21, OMAP5912)
- Xscale 3<sup>rd</sup> Generation Architecture (PXA310, Core Only)
- ARM1136/ARM1176(Core Only)
- Goldfish (QEMU Emulator)
- Versatile Platform Board
- ARM11MPCore (Realview PB11MP)
- Cortex-A9 (Core Only)

#### Para-virtualized O/S

#### Para-virtualized O/S

- Linux-2.6.21
  - Multi-core support patch applied
- Linux-2.6.24
  - Multi-core support patch applied
- uC/OS-II

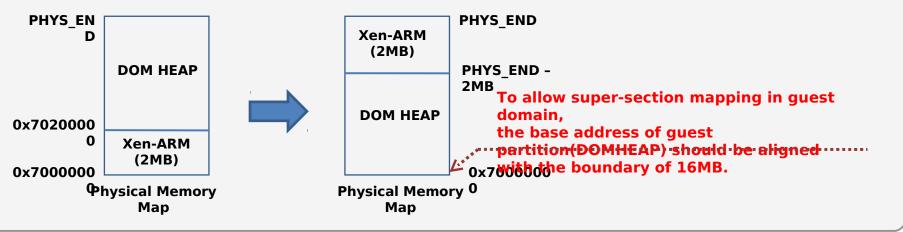


SAMSUNG ADVANCED

### **New Features**

#### Multi-core Support

- Synchronization
  - Locking Primitives
    - spinlock, read-write lock
  - Inter-processor Communication
- Core Topology Management
- VCPU Migration Enabled


#### Super-section Mapping(16MB) Support

Super-section Mapping(16MB) Support

• From ARM v6 core, it provides multiple-sized mapping unit.

Page (4KB), Section (1MB), Super-section(16MB)

 $\bullet$  To support this mapping unit, the physical memory map of Xen ARM (v5) is changed.





## **Latency Analysis of Xen-ARM**

### Target Hardware

- CPU : Xscale 3<sup>rd</sup> Generation 624MHz
- L1 Cache :
  - Instruction Cache : 32KB
  - Data Cache : 32KB
- L2 Cache : 256KB (Disabled)
- Memory : 128MB

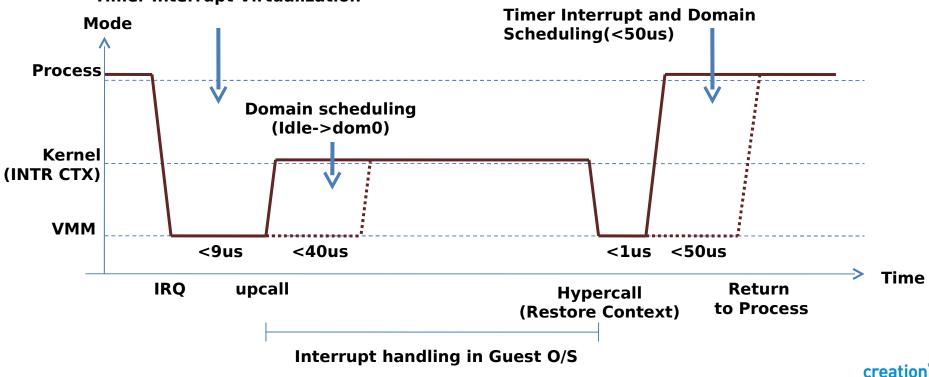
### • Xen-ARM

- Scheduler : SEDF

### Guest Operating System

– Linux-2.6.21



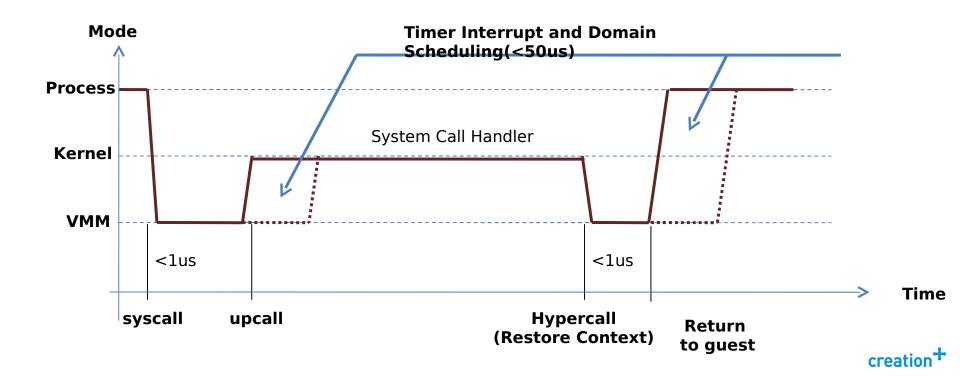

SAMSUNG

• From a guest domain point of view, interrupt latency consists of

- CPU cycles to virtualize interrupt
- CPU cycles to schedule domain
- In case of single domain, the worst case interrupt latency is less than around 50us.

• However, in case of two domains, interrupt delivery to an inactive guest domain may be delayed further until the inactive domain is scheduled.

Guest Domain's Context Manipulation Timer Interrupt Virtualization

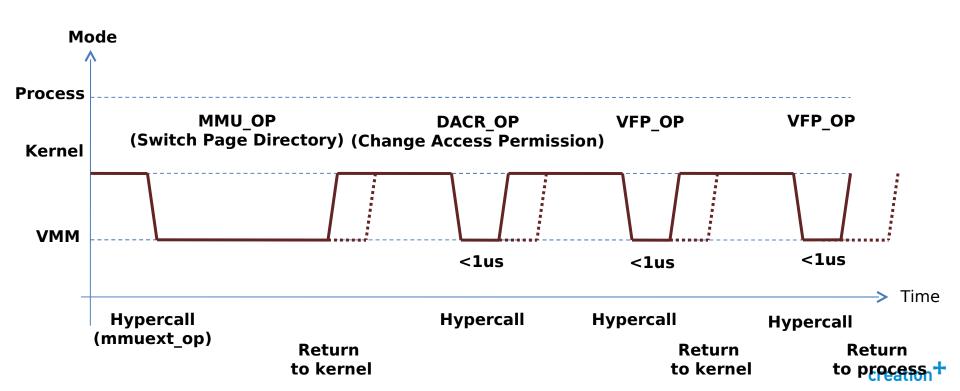



### System Call Latency and Hypercall Overhead

• As both system call and hypercall use the same SWI instruction, Xen-ARM should decode the SWI instruction issued from unprivileged mode to identify system call and hypercall.

-> system call latency has increased by 1 us,

guest domain's context manipulation time + SWI instruction decode time




### **Context Switching Overhead**

• During task switching in a guest domain, it is possible for Xen-ARM to receive any physical interrupts (even though virtualized interrupt to a guest domain is disabled).

SAMSUNG

-> context switching overhead would be increased.





- Though interrupt latency by Xen ARM does not seem large,
  - Event delivery to an inactive guest domain may be delayed until the domain is scheduled.
- To guarantee predictable responsiveness required for real-time CE systems,
  We will change Xen ARM to be preemptible.





Xen on ARM Project in Xen Community:

http://wiki.xensource.com/xenwiki/XenARM http://www.xen.org/

# **THANK YOU** !>.<!